Молекулярные мишени

Для эффективного функционирования многоклеточного организма необходимо точное координированное взаимодействие между различными биологическими молекулами, надмолекулярными и субклеточными структурами, клетками и органами, которые представляют собой функционально единую целостную систему. Физиологические функции органа, системы органов и организма в целом невыполнимы обособленными специализированными клетками и, тем более, субклеточными образованиями. Одним из ключевых этапов эволюции живого явилось приобретение способности макромолекул к обратимому, специфическому межмолекулярному взаимодействию, приводящему к изменению их функциональной активности, что в итоге предопределило регулируемость физиологических процессов на различных уровнях организации биологической системы – молекулярном, надмолекулярном, субклеточном, клеточном, органном и, наконец, в организме в целом. Биохимические процессы внутри клеток многоклеточного организма согласованы и, одновременно, адекватны возможностям отдельной клетки, ее способности участвовать в работе целостного организма. Подобный характер клеточного поведения в многоклеточном организме обусловлен способностью клеток вступать в регулируемые как со стороны клетки, так и со стороны организма, межклеточные, матрикс-клеточные и гуморально-клеточные взаимодействия посредством специализированных структур пептидной природы - рецепторов. Посредством межклеточных, матрикс-клеточных  и гуморально-клеточных взаимодействий  из клеток различной физиологической специализации, в которых осуществляется согласованная регуляция метаболической активности, позволяющая им выполнять физиологические функции, присущие органу/системе органов формируется функционально единая структура ткани, органа, организма в целом.

Структуры цитоплазматической мембраны многоклеточного организма в ходе эволюции формировались на основе уже существующих внутриклеточных структур пептидной природы1. Модификация соответствующих генов и эволюционный отбор обеспечили как сохранение определенных доменов белковой молекулы, получивших название эволюционно-консервативных, так и способствовали появлению новых, призванных выполнять специализированные функции. Наличие эволюционно-консервативных доменов в молекулах пептидной природы различного функционального назначения  значимо, в числе прочего, для регуляции их функциональной активности по единым принципам, едиными воздействиями.

Домены молекул пептидной природы, обогащенных остатками серы в составе цистеина, принадлежат к  эволюционно-консервативным компонентам молекулярной структуры. Обогащенные цистеином эволюционно-консервативные домены обнаружены в составе внеклеточных и внутриклеточных транспортных, регулирующих, сенсорных, исполнительных, структурных и других, по функциональному назначению, молекул пептидной природы

Рецепторные тирозинкиназы  имеют эволюционно консервативный внеклеточный домен, обогащенный остатками цистеина. Сульфгидрильные группы остатков цистеина в составе поверхностно-клеточных доменов рецепторов чувствительны к действию окисляющих реагентов, приводящих к образованию внутримолекулярных и межмолекулярных дисульфидных сшивок (связей), изменяющих функциональный статус поверхностно-клеточного домена (например, повышение тропности и/или специфичности в отношении агониста или агонистов) и/или инициирующих активность рецепторной тирозинкиназы2.

Остатки серы в составе цистеина эволюционно-консервативных доменов молекул пептидной природы являются одними из важнейших точек приложения факторов, влияющих на конформацию молекул пептидной природы3 4.

Возможность обратимого, регулируемого изменения  конформации внеклеточных и внутриклеточных молекул пептидной природы (включая рецепторы, мембранные транспортеры, ионные каналы, ферменты и другие специализированные молекулы пептидной природы), сопряженная с их способностью к выполнению физиологических  функций, сделала конформационные перестройки на уровне третичной и четвертичной структур одним из эффективных универсальных механизмов  воздействия на активность различных  белков, включая молекулы,  ответственные за межклеточные, матрикс-клеточные, гуморально-клеточные взаимодействия, обмен ионами и субстратами, организацию структуры клетки и ее метаболическую активность5 6 7

Регуляторное  воздействие на остатки серы в составе цистеина эволюционно-консервативных доменов структурных и функциональных молекул пептидной природы внеклеточного и внутриклеточного пространств определяется, в числе прочего, окислительно-восстановительным (редокс) окружением.  Редокс-окружение отражает уровень соотношения взаимопревращаемых окисленной и восстановленной специфической редокс-пары.  Редокс-окружение, образуемое взаимосвязанными редокс-парами в биологических жидкостях внеклеточного пространства, цитозоля и органелл клеток определяется суммированием в них восстановительного потенциала и восстановительной емкостью этих редокс пар.

Восстанавливающие эквиваленты  преобладают как во внутриклеточном пространстве, так и вне клетки, но величина  их отношения к окисляющим формам вне клетки и в ряде органелл несколько ниже внутриклеточного значения в цитозоле. Вследствие этого окружающая клетки среда и среда ряда внутриклеточных органелл характеризуется большей окисляющей способностью  в сравнении с цитозолем8 9 10

Функционально-активные конформации молекул внутриклеточного и внеклеточного пространства адаптированы к эволюционно сложившимся особенностям окислительно-восстановительных условий. Как отмечалось выше, остатки серы в составе цистеина структурных и регуляторных молекул пептидной природы являются одними из важнейших точек приложения эффекторных молекул, осуществляющих редокс-модуляцию. Цистеин сосредоточен в эволюционно-консервативных доменах структурных и функциональных молекул пептидной природы. Остатки цистеина эволюционно консервативных доменов регуляторных, структурных, каталитических молекул пептидной природы, редокс-модуляция связи серы которых приводит к изменению конформации и/или функциональной активности, получили обозначение «горячих цистеинов». Сульфгидрильные группы цистеина принимают участие в большинстве реакций в  виде меркаптидного иона RS?. Меркаптидные ионы белков более реакционоспособны и легче подвержены окислению, чем недиссоциированные сульфгидрильные группы. Значение рКа (константы ионизации) у SH-групп белков варьирует в широких пределах и в значительной степени определяется их взаимодействием с соседними функциональными группами в молекуле. Наличие положительно заряженной группы в непосредственной близости от SH-группы понижает ее константу ионизации. Значение рКа большинства SH-групп в активных центрах ферментов составляет приблизительно 8,511 12. Следовательно, при физиологическом значении рН в клеточном микроокружении и клетке (~7,4) существующие сульфгидрильные  группы большинства молекул пептидной природы остаются неионизированными из-за высокого значения рКа, поэтому они устойчивы к окислению. «Горячие цистеины»  эволюционно консервативных доменов окружены близлежащими положительно заряженными группами, вследствие чего их рКа колеблется от 4,7 до 5,4.  Таким образом, сульфгидрильная группа в их составе ионизирована даже при физиологическом значении рН и легко подвергается окислительной модификации. Функционально активная конформация основной массы внутриклеточных молекул пептидной природы формируется при восстановлении остатков серы в составе «горячих цистеинов» до сульфгидрильных групп13 14 15 16.  Напротив, функционально активная конформация основной массы внеклеточных молекул пептидной природы формируется при образовании дисульфидной связи между остатками серы «горячих цистеинов»17 18 19 20.

Восстановленный (GSH) и окисленный глутатион (GSSG) представляют одну из основных биохимических пар биологических пространств,  значение соотношения которых (GSH/GSSG) определяет величину окислительно-восстановительного  потенциала  соответствующего физиологического пространства21 22. Физиологически необходимое значение соотношения GSH/GSSG регулируется и формируется соответствующими биохимическими системами,  отслеживается  молекулярными редокс-сенсорами в структуре поверхностно-клеточных рецепторов, ионных каналов, биорегуляторов, ферментов, транспортеров цитоплазматической мембраны и других молекул пептидной природы внутриклеточного и внеклеточного пространств23 24.  Следствием реакции молекулярного редокс-сенсора на изменение величины редокс-потенциала является формирование  регуляторного сигнала, влияющего на  биохимические процессы или процесс, клеточную реакцию или реакции25 26, определяющие, с одной стороны, клеточный ответ, с другой – восстановление физиологически адекватной величины редокс-потенциала.  В этой связи, факторы, влияющие на величину соотношения между восстановленным и окисленным глутатионом (активные формы кислорода27, активные формы азота28 29 30, монооксид углерода31, органические перекиси32), способны модулировать биохимические процессы и клеточные реакции посредством изменения величины редокс потенциала и величины соотношения в системе восстановленный/окисленный глутатион. 

Рисунки 2 и 3  на примере биорегуляторов и их рецепторов  иллюстрируют принцип молекулярного механизма участия сульфгидрильных групп  эволюционно консервативных цистеин-содержащих доменов, восстановленного (GSH) и окисленного (GSSG) глутатиона в контроле функциональной активности молекул пептидной природы внеклеточного пространства.

Рис.2. Воздействие с участием восстановленного глутатиона (GSH) на дисульфидные сшивки (связи) в структуре функционально активных внеклеточных биорегуляторов пептидной природы и/или их поверхностно-клеточных рецепторов приводит к формированию  пула молекул, конформация которых ограничивает их  физиологически адекватные взаимодействия.

Рис.3.  Воздействие на сульфгидрильные (SH) группы в структуре функционально неактивных внеклеточных биорегуляторов пептидной природы и/или их поверхностно-клеточных рецепторов, обусловленное снижением величины редокс-потенциала вследствие увеличения количества  окисленного глутатиона (GSSG),  приводит к формированию  пула молекул, конформация которых адекватна характеру ситуационно обусловленных   физиологических взаимодействий.

Необходимо отметить, что активные формы кислорода, активные формы азота, органические перекиси способны непосредственно осуществлять окислительную модификацию  сульфгидрильных групп до сульфенатов. Однако, физиологический характер такого воздействия будет реализован, если после образования сульфената с участием GSH образуется смешанный дисульфид с глутатионом (реакция глутатионилирования) и далее будет осуществлен упорядоченный ферментативный процесс формирования правильной дисульфидной сшивки или восстановления остатка серы в составе цистеина33. В противном случае может произойти необратимое окисление остатка серы в составе цистеина до цистин-сульфоновой кислоты (Cys-SO3H) и, как следствие, утрата возможности регулировать функцию белка.

Читать далее: Как действует препарат