MOLIXAN AND CYTOFLAVIN ADMINISTRATION TO COMATOSE PATIENTS CAUSED BY ALCOHOL CONSUMPTION IN THE EMERGENCY UNIT

D.V. Busanov1, Vasiliy V. Afanasiev2, Aleksandr G. Miroshnichenko3, V.A. Basharin3, Nelli V. Petrova2, N.G. Alkhimenkov1, D.A. Zaporozhets3

1Alexandrovsky State City Hospital, St. Petersburg, Russia
2North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
3S.M. Kirov Military Medical Academy, St. Petersburg, Russia

Коллектив авторов, 2018

62 пациентов (мужчин) госпитализированы в стационарное отделение скорой медицинской помощи (ОСМП) с алкогольной комой 2. Больные распределены на три группы: 1-я группа (n = 21) получала моликсан и цитофлавин внутривенно, в дозах 3,0 мг/кг и 0,14 мг/кг соответственно, в дополнение к базовой стандартной терапии (глюкозо-солевые полииновые растворы с витаминами группы В); 2-я группа (n = 21) получала моликсан в изолированном виде (в дозе 3,0 мг/кг) в дополнение к базовой терапии; 3-я группа больных (n = 20, контрольная) получала только базовую терапию. Применение комбинации моликсана и цитофлавина приводило к более раннему восстановлению сознания у пациентов с алкогольной комой 2 (3,0 ± 0,1 ч – «комбинация»; 11,5 ± 1,2 ч – «контроль»), сокращение пребывания больных в стационаре. Назначение комбинации препаратов позволяло проводить качественную дифференциальную диагностику у коморбидных больных на фоне сопутствующей интоксикации этанолом.

Ключевые слова: алкогольная кома, моликсан, цитофлавин, восстановление сознания, лактат

62 patients were admitted to Alexandria City Hospital with acute severe ethanol intoxication (coma 2). The first group (21 pts) received by IV bolus the combination of Molixan (3,0 mg/kg) and Cytoflavin (0,14 mg/kg); 2nd group (21 pts) received Molixan only (3,0 mg/kg IV bolus). The interventions were identical in all groups including controls (20 pts) via standard therapy (dextrose, saline, vitamins). The awakening effect was achieved in 3,0 ± 0,1h (molixan+cytoflavin), and 11,5 ± 1,2 h (controls). Molixan and Cytoflavin administration also reduced lactate acidosis, increased quality assurance, and length of stay in the Hospital, as such.

Key words: ethanol, coma, molixan, cytoflavin, awakening effect, lactic acid

Контакт: Busanov Dmitry Vladimirovich, dima.busanov@mail.ru

Бузанов Д. В., Афанасьев В. В., Мирошниченко А. Г., Башарин В. А., Петрова Н. В., Альхименков Н. Г., Запорожец Д. А. Применение комбинации моликсана и цитофлавина для лечения алкогольной комы в условиях стационарного отделения скорой медицинской помощи // Скорая медицинская помощь. 2018. № 2. С. 28–33
ВВЕДЕНИЕ

Ранее нами было показано, что пробуждающее действие пентидергического препарата моликсан при алкогольной коме 2 существенно улучшило качество лечения больных с этой патологией [1, 2]. Быстрое восстановление сознания позволяло улучшить дифференциальную диагностику и «пролечивать» пациентов в ОЭМП, без перевода в ОРИТ. Вместе с тем, отмечено, что у 50% больных сохранялся лактат-ацидоз, — фактор, осложняющий течение алкогольной комы. Помимо этого, существует связь между лактат-ацидозом и нарушением когнитивных функций у больных впоследствии [3]. Одним из способов устранения лактат-ацидоза служит назначение гликолитических инфузционных антигипоксантов [4].

ЦЕЛИ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Изучить лечебное действие комбинации моликсана и антигипоксанта цитофлавина при лечении больных с алкогольной комой 2 в условиях ОЭМП (разрешение этического комитета ВМедА им. С. М. Кирова № 156 от 23.12.2014).

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Работа выполнена на кафедре скорой медицинской помощи СПБГМУ имени И. И. Мечникова на базе Александровской больницы СПб. Изучена динамика клинической картины у 62 пациентов — мужчин в возрасте 43±1,5 года. Больных доставляли в ОЭМП бригадами скорой медицинской помощи Санкт-Петербурга в состоянии алкогольной комы 2. Время экспозиции составило 5±0,5 ч. На догоспитальном этапе всех пациентам проведена изолемическая гемодилюция глюкозо-солевыми полинонными растворами с витаминами. Критерии включения: подписанное информированное согласие родственников больного; наличие токсической концентрации этанола в плазме крови, алкогольная неосложненная кома 2 степени тяжести; возраст больных от 18 до 70 лет. Критерии исключения: черепно-мозговая травма, переломы трубчатых костей, ожоги; кровотечения; гепатиты, ВИЧ-инфекция; синдром позиционного сдавления; отравление токсическими спиртами и лекарственными препаратами помимо этанола; участие в другом клиническом исследовании. Критерием исключения служила непереносимость препаратов.

В стационаре все больные получали базовую терапию, в виде глюкозо-солевых полинонных растворов, тиамина, пиридоксина, аскорбиновой кислоты, в дозах 300, 200, 500 мг соответственно, согласно стандарту лечения острых алкогольных отравлений [5]. Больные распределены на три группы: 1-я (n=21) в дополнение к базовой терапии получала моликсан (в дозе 3,0 мг/кг) и цитофлавин (в дозе 0,14 мг/кг), внутривенно однократно; 2-я (n=21) — моликсан в изолированном виде (в дозе 3,0 мг/кг), 3-я (контроль, n=20) получала стандартную терапию (табл. 1).

Моликсан является органической солью иноцизина в сочетании с пептидным компонентом (2Na-Gli-Cis-Glu), служит иммуномодулирующим средством (код ATX: L03) и гепатопротектором [6]. Для лечения алкогольной комы был впервые использован в наших исследованиях [1]. Цитофлавин — комбинированный антигипоксант, в состав которого входят рибофлавин, рибофлавин, никотинамид, лентарная кислота [4]. Цитофлавин был использован с целью устранения лактат-ацидоза. Верификацию алкоголя вы полняли методом тестовых наборов «Рош Диагностика» на аппарате Lab (Taurus, Дания). Больным выполняли общепринятые биохимические тесты. Состав газов крови, КОС, лактат оценивали на аппарате ABL-800 (Radiometr, Дания). Забор крови выполняли при поступлении больных и через 3 часа. В этом интервале времени оценивали системную гемодинамику (АД, пульс), показатели ЭКГ (интервал Q—T), дыхательной системы (ЧДД, SatO2), глюкозы, КОС, лактат и газы капиллярной крови. Интегральными показателями служили скорость восстановления сознания, время пребывания больных и в стационаре и маршрутизация пациентов.

Тяжесть алкогольной комы оценивали по шкале PBSS (Pittsburg Brain Stem Score, 1991), которая представляется более информативной по сравнению со шкалой ком Глазго, особенно при

| Таблица 1 |

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Группа «контроль» (n=20)</th>
<th>Группа «моликсан» (n=21)</th>
<th>Группа «моликсан+цитофлавин» (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, года</td>
<td>44±1,0</td>
<td>43±0,5</td>
<td>42±0,5</td>
</tr>
<tr>
<td>Этanol в крови, %</td>
<td>4,1±0,4</td>
<td>4,2±0,2</td>
<td>4,3±0,2</td>
</tr>
<tr>
<td>Сознание по шкале PBSS, при поступлении, баллы</td>
<td>28,1±0,3</td>
<td>28,0±0,2</td>
<td>28,3±0,2</td>
</tr>
</tbody>
</table>
Шкала ком PBSS (Pittsburg Brain Stem Score, 1991)

<table>
<thead>
<tr>
<th>Открывание глаз</th>
<th>Речь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Спонтанное</td>
<td>4</td>
</tr>
<tr>
<td>На вербальную стимуляцию</td>
<td>3</td>
</tr>
<tr>
<td>На боль</td>
<td>2</td>
</tr>
<tr>
<td>Отсутствует</td>
<td>1</td>
</tr>
</tbody>
</table>

Дихательная реакция

<table>
<thead>
<tr>
<th>Реакция зрачков на свет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выполняет словесные команды</td>
</tr>
<tr>
<td>Целенаправленная реакция на боль</td>
</tr>
<tr>
<td>Реакция ожиривания на боль</td>
</tr>
<tr>
<td>Сглаживание в/конечности на боль</td>
</tr>
<tr>
<td>Разгибание в/конечности на боль</td>
</tr>
<tr>
<td>Судороги</td>
</tr>
</tbody>
</table>

Реакции черепно-мозговых нервов

<table>
<thead>
<tr>
<th>Спонтанное дыхание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сохранены все</td>
</tr>
<tr>
<td>Отсутствует рефлекс</td>
</tr>
<tr>
<td>Срединный рефлекс</td>
</tr>
<tr>
<td>Отсутствует рефлексы с bifurcationa трахей</td>
</tr>
<tr>
<td>Язык</td>
</tr>
<tr>
<td>Нормальный</td>
</tr>
<tr>
<td>Локальные</td>
</tr>
<tr>
<td>Генерализированные</td>
</tr>
<tr>
<td>Генерализованные</td>
</tr>
<tr>
<td>Нервные</td>
</tr>
</tbody>
</table>

РЕЗУЛЬТАТЫ ИХ ОБСУЖДЕНИЕ

При поступлении в ОЭМП у всех пациентов регистрировали кому 2 (см. табл. 1). Через 3 ч уровень сознания больных составил 33,5±0,4; 34,5±0,3; и 29,5±0,3 балла соответственно, «моляксан»; «моли克斯ан+цитофлавин»; контроль; скорость его восстановления в группах «моляксан» и «моли克斯ан+цитофлавин» почти в 3 раза превышала показатель контрольной группы (табл. 3).

У всех больных при поступлении отмечены тахикардия на фоне гипотензии и увеличение интервала Q–T, что указывало на первичный кардиотоксический эффект, который возникает при действии этанола в высоких дозах [5] (табл. 4).

При назначении моляксана и его комбинации с цитофлавином ЧСС снижалась на 8% (р>0,05), интервал Q–T на 37% (также без достоверных отличий между группами); в контрольной группе Q–T снизился на 6% (р>0,05). Назначение комбинации препаратов сопровождалось более значи-

<table>
<thead>
<tr>
<th>Состояние сознания</th>
<th>Группа «контроль» (n=20)</th>
<th>Группа «моляксан» (n=21)</th>
<th>Группа «моли克斯ан+цитофлавин» (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>При поступлении, баллы по PBSS</td>
<td>28,1±0,3</td>
<td>28,0±0,2</td>
<td>28,2±0,2</td>
</tr>
<tr>
<td>Через 3 ч, баллы по PBSS</td>
<td>29,5±0,1</td>
<td>33,5±0,2</td>
<td>34,5±0,2</td>
</tr>
<tr>
<td>Полное восстановление сознания, ч</td>
<td>11,5±1,2</td>
<td>3,5±0,3</td>
<td>3,0±0,2</td>
</tr>
</tbody>
</table>

р=0,05 по отношению к контролю; р=0,001 по отношению к контролю.
Таблица 4

Показатели гемодинамики, функции внешнего дыхания и интервала Q−T у пациентов в алкогольной коме 2 ст.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Группа «контроль» (n=20)</th>
<th>Группа «молликсан» (n=21)</th>
<th>Группа «молликсан + цитофлавин» (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>при постплюдении</td>
<td>через 3 ч</td>
<td>при постплюдении</td>
</tr>
<tr>
<td>ЧСС, уд./мин</td>
<td>112,0±8,5</td>
<td>104,0±5,1</td>
<td>108,0±9,5</td>
</tr>
<tr>
<td>АД сист., мм рт.ст.</td>
<td>116,8±6,6</td>
<td>121,2±3,2</td>
<td>115,6±4,3</td>
</tr>
<tr>
<td>АД диаст., мм рт.ст.</td>
<td>60,2±4,5</td>
<td>75,4±2,1</td>
<td>63,8±3,5</td>
</tr>
<tr>
<td>Интервал Q−T, мс</td>
<td>540±7</td>
<td>510±5</td>
<td>537±6</td>
</tr>
<tr>
<td>ЧДД</td>
<td>11,0±1,0</td>
<td>12,0±2,1</td>
<td>12,0±2,0</td>
</tr>
</tbody>
</table>

*p<0,05 по сравнению с постплюдением в стационаре; **p<0,05 по сравнению с контролем;

мым восстановлением респираторной функции больных, что могло носить вклад в компенсацию метаболического ацидоза (табл. 3). Из измения концентрации глюкозы в крови составило 0,16±0,02% /ч, но его значение купировало ацидоз за счет респираторного компонента. Вместе с тем, отмечена тенденция прироста лактата крови (3,0±0,4 моль/л при постплюдении, до 5,3±0,8 моль/л через 3 ч, практически у всех больных в группе «молликсан», p<0,05), в то время как в группе «цитофлавин + молликсан» лактат снизился на 14% по сравнению с контролем (p<0,05). В контрольной группе изменения уровня лактата не наблюдалось (табл. 5).

По мнению McDonald (1994), Brent (2017), уровень мочевины в сыворотке крови более 2,4 моль/л является в процессе развития антиоксидантная патология, фактором; увеличение до 5,5 моль/л делает состояние больных критическим, возможным сопровождаться нарушением функции внешнепротока и гипергликемией. Возможным объяснением этого может быть следующим: при высоком уровне уровня спирта (4,1±0,4%) в обмен веществ поставляется ацетил-CoA (метаболит углен и цельного ацидоза), сходный по структуре с ацетил-CoA, образующимся из пирувата. В результате этого основная часть пирувата превращается в лактат, так как эта реакция не требует энергетических затрат; при этом ацетоацетат глюкоза может поддерживаться [8]. Вероятно, у молликсана «не хватает» метаболической силы действия для биотрансформации пирувата в ацетоацетат. Это свойство хорошо изучено у цитофлавина, возможно поэтому действие комбинации молликсана + цитофлавина проявляется снижением концентрации лактата в плазме крови [7].

Пациенты обеих групп наблюдения не требовали интубационной и респираторной поддержки, не нуждались в госпитализации в ОРИТ в связи с восстановлением адекватного сознания через 3,5±0,3 ч («молликсан») и 3,0±0,2 ч («молликсан + цитофлавин»). Показатели газов крови у больных обеих групп существенно не различались. Однако «дополнительный» цитофлавин увеличивал метаболический компонент в действии молликсана, хотя такое предположение требует дальнейшего исследования.

В табл. 5 представлены различия в маршрутации пациентов трех групп: все пациенты из группы «контроль» в связи с длительным удушением сознания и угнетением дыхания госпитализировались из ОМП в ОРИТ. 86% пациентов

Таблица 5

Динамика показателей КОС и газового состава смещенной (калибированной) крови у пациентов в алкогольной коме 2 ст.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Группа «контроль» (n=20)</th>
<th>Группа «молликсан» (n=21)</th>
<th>Группа «молликсан + цитофлавин» (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>при постплюдении</td>
<td>через 3 ч</td>
<td>при постплюдении</td>
</tr>
<tr>
<td>рН</td>
<td>7,25±0,05</td>
<td>7,30±0,02</td>
<td>7,22±0,03</td>
</tr>
<tr>
<td>ВВ, см³/л</td>
<td>-5,9±1,77</td>
<td>-3,60±0,13</td>
<td>-5,6±1,43</td>
</tr>
<tr>
<td>pО2, мм рт.ст.</td>
<td>52,7±7,0</td>
<td>71,7±6,1</td>
<td>51,4±5,8</td>
</tr>
<tr>
<td>pСО2, мм рт.ст.</td>
<td>51,0±4,8</td>
<td>46,4±3,8</td>
<td>49,4±3,9</td>
</tr>
<tr>
<td>SatO2, %</td>
<td>74,4±5,6</td>
<td>86,7±3,5</td>
<td>74,2±4,9</td>
</tr>
<tr>
<td>Лактат, моль/л</td>
<td>3,1±0,6</td>
<td>3,0±0,4</td>
<td>3,0±0,4</td>
</tr>
</tbody>
</table>
группы «моликсан» проходили лечение в условиях ОСМП и не нуждались в длительном проведении интенсивной терапии и госпитализации. В группе «моликсан+цитофлавин» все больные вызывались из ОСМП.

При исследовании свойств памяти на 3-й сутки установлено, что наилучший результат по запоминанию 10 слов достигнут в группе «моликсан+цитофлавин» (табл. 7).

БЫВОДЫ

1. Применение моликсана в комплексной терапии алкогольной комы 2 степени приводит к восстановлению сознания больных с алкогольной комой в три раза быстрее, чем в контрольной группе больных.

2. У больных группы «моликсан» отмечена тенденция к значительному увеличению уровня лактата крови (при р>0,05).

3. Назначение комбинации моликсана и цитофлавина сопровождается снижением уровня лактата плазмы крови на 14% (р<0,05).

4. Моликсан и цитофлавин оказывает наиболее благоприятное действие на когнитивные функции больных, перенесших алкогольную кому 2 по тесту запоминания 10 слов.

ЛИТЕРАТУРА/REFERENCES

1. Бузанов Д. В., Петрова Н. В., Афанасьев В. В. и др. Применение моликсана для раннего лечения алкогольной комы // Скорая медицинская помощь. 2016. № 4. С. 70–75. [Buzanov D. V. et al. Primenenie molskana dlja rannego irchenyia alkogolnoi komy. Shoraya medicinskaya pomoshch, 2016, No 4, pp. 70–75 (In Russ.)].

Поступила в редакцию 20.03.2018 г.
Сведения об авторах:

Бузанов Дмитрий Владимирович — врач-реаниматолог СПб ГБУЗ «Александровская больница»; 193312, Санкт-Петербург, пр. Солидарности, д. 4; e-mail: dima.buzanov@mail.ru.

Афанасьев Василий Владимирович — доктор медицинских наук, профессор кафедры скорой медицинской помощи ФГБОУ ЗО «Северо-Западный государственный медицинский университет им. И. И. Мечникова» МЗ РФ; 191015, Санкт-Петербург, Кирочная ул., д. 41; e-mail: sobaka_liza@mail.ru.

Мирионовичко Александр Григорьевич — доктор медицинских наук, профессор кафедры скорой медицинской помощи ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И. И. Мечникова» МЗ РФ; 191015, Санкт-Петербург, Кирочная ул., д. 41; e-mail: agm0303@mail.ru.

Антушевич Александр Евгеньевич — доктор медицинских наук, профессор кафедры военно-полевой терапии ФГБОУ ВО «Военно-медицинскская академия им. С. М. Кирова» МО РФ; 194044, Санкт-Петербург, ул. Академика Лебедева, д. 4/2; e-mail: a.antushevic@mail.ru.

Петрова Нелли Владимировна — кандидат медицинских наук, доцент кафедры скорой медицинской помощи ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И. И. Мечникова» МЗ РФ; 191015, Санкт-Петербург, Кирочная ул., д. 41; e-mail: chijik62@mail.ru.

Баширов Вадим Александрович — доктор медицинских наук, профессор, начальник кафедры военной токсикологии и медицинской защиты ФГБОУ ВО «Военно-медицинскская академия им. С. М. Кирова» МО РФ; 194044, Санкт-Петербург, ул. Академика Лебедева, д. 4/2; e-mail: basharin1@mail.ru.

Альхименко Никита Геннадьевич — врач приемного отделения СПб ГБУЗ «Александровская больница»; 193312, Санкт-Петербург, пр. Солидарности, д. 4; e-mail: alk-nikita@yandex.ru.

Запорошенц Дарья Александровна — врач приемного отделения СПб ГБУЗ «Александровская больница»; 193312, Санкт-Петербург, пр. Солидарности, д. 4; e-mail: da-zaporogets@mail.ru.